Class numbers of quadratic forms over real quadratic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect unary forms over real quadratic fields

Let F = Q( √ d) be a real quadratic field with ring of integers O. In this paper we analyze the number hd of GL1(O)orbits of homothety classes of perfect unary forms over F as a function of d. We compute hd exactly for square-free d ≤ 200000. By relating perfect forms to continued fractions, we give bounds on hd and address some questions raised by Watanabe, Yano, and Hayashi.

متن کامل

Quadratic Forms over Arbitrary Fields

Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...

متن کامل

Quadratic Forms over Global Fields

1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...

متن کامل

Computations of class numbers of real quadratic fields

In this paper an unconditional probabilistic algorithm to compute the class number of a real quadratic field Q( √ d) is presented, which computes the class number in expected time O(d1/5+ ). The algorithm is a random version of Shanks’ algorithm. One of the main steps in algorithms to compute the class number is the approximation of L(1, χ). Previous algorithms with the above running time O(d1/...

متن کامل

Indivisibility of Class Numbers of Real Quadratic Fields

Although the literature on class numbers of quadratic fields is quite extensive, very little is known. In this paper we consider class numbers of real quadratic fields, and as an immediate consequence we obtain an estimate for the number of vanishing Iwasawa λ invariants. Throughout D will denote the fundamental discriminant of the quadratic number fieldQ( √ D), h(D) its class number, and χD :=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1977

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000017736